ФОРМАЛИЗОВАННАЯ ОЦЕНКА СТЕПЕНИ АКТИВНОСТИ РАЗЛОМОВ В ПЛИОЦЕН-ЧЕТВЕРТИЧНОЕ ВРЕМЯ (на примере Байкальской рифтовой зоны)

О.В. Лунина

Институт земной коры СО РАН, 664033, Иркутск, ул. Лермонтова, 128, Россия

Разработан новый формализованный подход к оценке степени активности разломов, базирующийся на комплексном анализе разнородных данных. Последние систематизируются в каталоге, включающем два основных раздела: общие сведения и важнейшие параметры плиоцено-четвертичных разломов: различные признаки их активности (геоморфологические, структурно-геологические, палеосейсмогеологические, сейсмометрические, геофизические, геодезические, инженерно-геологические, гидрологические, метеорологические), за которые в зависимости от значимости признака присваиваются экспертные оценки. Степень активности рассчитывается суммированием полученных значений и записывается как общий балл активности разлома по имеющимся данным. Реализация принципов подобного подхода для района Баргузинской и Тункинской впадин, а также северо-восточного фланга Байкальской рифтовой зоны позволила классифицировать разломы по степени активности на пять групп (слабую, среднюю, повышенную, высокую и аномально высокую), а результаты расчетов представить в виде соответствующих карт. Уточнено существующее определение опасного разлома. К таковым рекомендуется относить разрывные нарушения с повышенной, высокой или аномально высокой степенью активности. В пределах изученных площадей к опасным разломам относятся не более 4–8 %. При привлечении большого количества данных этот процент может повыситься, но незначительно, так как все известные на сегодняшний день сейсмические, палеосейсмогеологические и структурно-геологические признаки, вносящие основной вклад в расчет степени активности разломов, учтены. Предложенный подход может быть использован для решения прикладных задач, связанных с оценкой сейсмической опасности и выбором участков, перспективных для проведений геофизического мониторинга сейсмичности.

Разломы, степень активности, оценка, база данных, сейсмическая опасность.

FORMALIZED ESTIMATION OF PLIOCENE-QUATERNARY FAULT ACTIVITY
(by the example of the Baikal Rift system)

O.V. Lunina

It is suggested to estimate Pliocene-Quaternary fault activity in a formalized way from synthesis of different data. The respective database consists of two main sections: (i) general information and key parameters and (ii) geomorphic, structural, seismogeological, seismological, geophysical, geodetic, engineering-geological, hydrological, and meteorological data on the faults. The fault attributes are rated according to their statistical significance, and the total rating measures the fault activity. With this approach, the faults in the Barguzin and Tunka rift basins and in the northeastern flank of the Baikal Rift system have been divided into five activity classes (low, medium, relatively high, high, and very high activity) and mapped correspondingly. It has been recommended that the concept of a hazardous fault, as refined using the activity division, refers to faults of the relatively high, high, and very high activity. Thus estimated hazardous faults within the study area are quite few (4–8 %), though this percentage may increase slightly with a greater amount of input data. The underestimation cannot be dramatic because all known seismological, seismogeological, and structural attributes of faults which contribute to the activity rating have been already taken into account. The new approach may be useful in seismic risk assessment and in choice of sites suitable for geophysical monitoring of seismicity.

Faults, activity class, estimation, database, seismic hazard

ВВЕДЕНИЕ

О разломах и их активности написано большое количество работ, и тем не менее эта тема не становится менее актуальной, так как тесно связана с проблемами сейсмобезопасности территорий. Интенсивно
но развивавшиеся в последние годы строительство трубопроводов и протяженных мостов, а также многолетние исследования автора активных тектонических нарушений и в целом разломно-блокового строения земной коры для плiocен-четвертичного времени привели уже в мысли о необходимости создания простого формализованного подхода к оценке степени активности разломов, откристрованных в пределах какой-либо площади.

По мнению автора, целесообразно учитывать все имеющиеся сведения о разломах, в связи с чем цель настоящей статьи — представить для обсуждения новый формализованный подход к количественной оценке степени активности разломов на основе комплекса данных для выделения среди них потенциально опасных.

ПОНАЯТИЯ О РАЗЛОМАХ, ИХ АКТИВНОСТИ И ОПАСНОСТИ

Согласно современным тектонофизическим представлениям под разломом понимается поверхность механического нарушения способности к пространственно более 100 м, образующаяся в деформируемом теле под действием приложенных к нему внешних сил [Семинский и др., 2005]. Более жесткие раз рывные нарушения классифицируются как трещины. Разлом имеет определенную зону, включающую в себя не только тектониты разломного сместителя, но и существенно большие по размерам объемы горных пород, в которых имеют место генетически связанные с его формированием пластические и разрывные деформации. Главными критериями для выделения разломов традиционно служат морфотектони ческие линеаменты, выявляемые при дешифрировании гидрогеографической сети и рельефа, и зоны разрывных нарушений, документируемые при структурно-геолого-геоморфологическом картировании. В основе представляемых в данной работе карт плюцен-четвертичных разломов лежит большой объем фактических материалов, собранных и обработанных по единой методике [Лукина, Гладков, 2004, 2007, 2008].

Для решения прикладных задач, связанных с инженерными изысканиями под строительство, среди всех активных разрывных нарушений целесообразно выделять опасные [Несмеянов и др., 1992; Несме-
янов, 2004]. Термин «опасный разлом» введен Ю.О. Кузьминым, В.С. Жуковым [2004] для определения активного разлома, в зоне которого произошли какие-либо современные короткоперiodические (первые месяцы и годы), пульсационные и/или знакопеременные деформации. По ряду причин (поворотность сильных землетрясений с М ≥ 6 один раз в сотни—тысячелетия; невозможность измерений деформаций на каждом разломе при их большом количестве на площади; существование трещиноватой разломной зоны без видимых современных смещений, но способной провоцировать оползни или обвал при других неблагоприятных условиях и др.) предлагается расширить это понятие и под «опасным разломом» подразумевать тот активный разлом, где существует большая вероятность проявления тектонических, сейсмических и инженерно-геологических процессов, способных принести вред здоровью людей, а также материальный и экологический ущерб экономики страны.

МЕТОДИКА И ОБОСНОВАНИЕ БАЛЛОВ ДЛЯ ОЦЕНКИ СТЕПЕНИ АКТИВНОСТИ РАЗЛОМОВ

Методика оценки степени активности разломов, их отдельных сегментов или систем основана на базе данных, состоящей из двух главных разделов и заполняющейся в табличной форме в любой подходящей компьютерной программе (например, Microsoft Office Excel). Первый раздел включает общие сведения о разрывных нарушениях и их важнейших параметрах (табл. 1), второй — девять групп прямых и косвенных признаков, характеризующих активность разлома (табл. 2). Все группы признаков, за исключением метеорологической [Морозова, 2005], традиционно используются в практике исследований активной тектоники [Трифонов и др., 1993; Рогожин, Овсянченко, 2001; Луния, Гладков, 2004, 2007, 2008; Семинский и др., 2005; Рогожин и др., 2005; Кузьмин, Жуков, 2004; Овсянченко, 2006], поэтому не требуют детального обоснования их важности для оценки степени активности разрывных нарушений.

За каждый признак, установленный в зоне разлома, статистически равной 10 % от его длины [Рукин, 1977; Шерман и др., 1985; Шерман, Савитский, 2005], в зависимости от значимости насчитываются баллы, выведенные эмпирическим путем при изучении эталонной площади, представляющей собой Баргузинскую впадину и ее горное обрамление (рис. 1). Данный объект являлся достаточно подходящим для подобной разработки, так как территория Прибайкалья — сейсмически-активная часть БРЗ, но согласно сейсмологическому каталогу Байкальского филиала Геофизической службы СО РАН [Интернет-сайт...], за инструментальный период там отсутствовали землетрясения с магнитудой более 5.5. Значимость признака и соответственно балл за него определялся индивидуально в сопоставлении с другими характеристиками разломов и изменялся от 1 до 7 (табл. 2). При этом балл за косвенный признак активности не мог быть выше 3. Далее обоснованы принятые нами баллы на основе существующих в природе связей и закономерностей.

1 балл присваивается за прямые и косвенные признаки, которые в принципе могут допускать только слабую активность разрывного нарушения в позднеплейстоцен-четвертичное время, заведомо не пред-
<table>
<thead>
<tr>
<th>Прямоу</th>
<th>Палеосейсмогеологический</th>
<th>Сейсмологический</th>
<th>Геолого-геохимический</th>
</tr>
</thead>
<tbody>
<tr>
<td>Указываются максимальные класс (Ki), магнитуда (M)</td>
</tr>
<tr>
<td>Указываются максимальная амплитуда смещения (м), тип смещения по сейсмогеному разрыву, предполагаемая магнитуда и максимальная интенсивность по литературным данным</td>
<td>Указываются максимальные класс (Ki), магнитуда (M)</td>
<td>Указываются максимальные класс (Ki), магнитуда (M)</td>
<td>Указываются максимальные класс (Ki), магнитуда (M)</td>
</tr>
<tr>
<td>a) палеосейсмоседиментация, ее возраст, длина (км), максимальная амплитуда смещения (м)</td>
<td>b) палеосейсмоседиментация, ее возраст, длина (км), максимальная амплитуда смещения (м)</td>
<td>b) палеосейсмоседиментация, ее возраст, длина (км), максимальная амплитуда смещения (м)</td>
<td>b) палеосейсмоседиментация, ее возраст, длина (км), максимальная амплитуда смещения (м)</td>
</tr>
<tr>
<td>a) трещинны в среднее-</td>
<td>b) палеосейсмоседиментация, ее возраст, длина (км), максимальная амплитуда смещения (м)</td>
<td>b) палеосейсмоседиментация, ее возраст, длина (км), максимальная амплитуда смещения (м)</td>
<td>b) палеосейсмоседиментация, ее возраст, длина (км), максимальная амплитуда смещения (м)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>прямой</td>
<td>косвенный</td>
<td>геоморфологический</td>
<td>геоморфологический</td>
</tr>
<tr>
<td>Критерии оценки</td>
<td>Критерии оценки</td>
<td>геоморфологический</td>
<td>геоморфологический</td>
</tr>
<tr>
<td>a) проявление разлома на топогеографических картах, космоснимках или 3-мерных моделях рельефа</td>
<td>a) повышенное содержание радона в воздухе (полько)</td>
<td>b) 2 балла</td>
<td>3 балла</td>
</tr>
<tr>
<td></td>
<td>(диагностическое</td>
<td></td>
<td></td>
</tr>
<tr>
<td>измерение)</td>
<td>b) 2 балла</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) проявление разлома на местности (визуальное</td>
<td>b) 2 балла</td>
<td></td>
<td></td>
</tr>
<tr>
<td>диагностирование)</td>
<td>b) 2 балла</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) превышение</td>
<td>a) наличие вспо-</td>
<td>a) наличие вспо-</td>
<td>a) наличие вспо-</td>
</tr>
<tr>
<td>признак</td>
<td>ленных терминальных</td>
<td>ленных терминальных</td>
<td>ленных терминальных</td>
</tr>
<tr>
<td></td>
<td>источников менее 5 100 м³</td>
<td>источников менее 5 100 м³</td>
<td>источников менее 5 100 м³</td>
</tr>
<tr>
<td>d) наличие</td>
<td>a) увеличение вспо-</td>
<td>a) увеличение вспо-</td>
<td>a) увеличение вспо-</td>
</tr>
<tr>
<td>признаков</td>
<td>ленных терминальных</td>
<td>ленных терминальных</td>
<td>ленных терминальных</td>
</tr>
<tr>
<td></td>
<td>источников</td>
<td>источников</td>
<td>источников</td>
</tr>
<tr>
<td>e) особенно</td>
<td>a) увеличение вспо-</td>
<td>a) увеличение вспо-</td>
<td>a) увеличение вспо-</td>
</tr>
<tr>
<td></td>
<td>признаков</td>
<td>ленных терминальных</td>
<td>ленных терминальных</td>
</tr>
<tr>
<td></td>
<td></td>
<td>источников</td>
<td>источников</td>
</tr>
<tr>
<td></td>
<td>f) наличие</td>
<td>a) увеличение вспо-</td>
<td>a) увеличение вспо-</td>
</tr>
<tr>
<td></td>
<td>признаков</td>
<td>ленных терминальных</td>
<td>ленных терминальных</td>
</tr>
<tr>
<td></td>
<td></td>
<td>источников</td>
<td>источников</td>
</tr>
<tr>
<td></td>
<td>g) особенно</td>
<td>a) увеличение вспо-</td>
<td>a) увеличение вспо-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>признаков</td>
<td>признаков</td>
</tr>
<tr>
<td></td>
<td>h) наличие</td>
<td>a) увеличение вспо-</td>
<td>a) увеличение вспо-</td>
</tr>
<tr>
<td></td>
<td>признаков</td>
<td>ленных терминальных</td>
<td>ленных терминальных</td>
</tr>
<tr>
<td></td>
<td></td>
<td>источников</td>
<td>источников</td>
</tr>
<tr>
<td></td>
<td>i) особенно</td>
<td>a) увеличение вспо-</td>
<td>a) увеличение вспо-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>признаков</td>
<td>признаков</td>
</tr>
<tr>
<td></td>
<td>j) наличие</td>
<td>a) увеличение вспо-</td>
<td>a) увеличение вспо-</td>
</tr>
<tr>
<td></td>
<td>признаков</td>
<td>ленных терминальных</td>
<td>ленных терминальных</td>
</tr>
<tr>
<td></td>
<td></td>
<td>источников</td>
<td>источников</td>
</tr>
<tr>
<td></td>
<td>k) особенно</td>
<td>a) увеличение вспо-</td>
<td>a) увеличение вспо-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>признаков</td>
<td>признаков</td>
</tr>
<tr>
<td></td>
<td>l) наличие</td>
<td>a) увеличение вспо-</td>
<td>a) увеличение вспо-</td>
</tr>
<tr>
<td></td>
<td>признаков</td>
<td>ленных терминальных</td>
<td>ленных терминальных</td>
</tr>
<tr>
<td></td>
<td></td>
<td>источников</td>
<td>источников</td>
</tr>
<tr>
<td></td>
<td>m) особенно</td>
<td>a) увеличение вспо-</td>
<td>a) увеличение вспо-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>признаков</td>
<td>признаков</td>
</tr>
<tr>
<td></td>
<td>n) наличие</td>
<td>a) увеличение вспо-</td>
<td>a) увеличение вспо-</td>
</tr>
<tr>
<td></td>
<td>признаков</td>
<td>ленных терминальных</td>
<td>ленных терминальных</td>
</tr>
<tr>
<td></td>
<td></td>
<td>источников</td>
<td>источников</td>
</tr>
<tr>
<td></td>
<td>o) особенно</td>
<td>a) увеличение вспо-</td>
<td>a) увеличение вспо-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>признаков</td>
<td>признаков</td>
</tr>
<tr>
<td></td>
<td>p) наличие</td>
<td>a) увеличение вспо-</td>
<td>a) увеличение вспо-</td>
</tr>
<tr>
<td></td>
<td>признаков</td>
<td>ленных терминальных</td>
<td>ленных терминальных</td>
</tr>
<tr>
<td></td>
<td></td>
<td>источников</td>
<td>источников</td>
</tr>
<tr>
<td></td>
<td>q) особенно</td>
<td>a) увеличение вспо-</td>
<td>a) увеличение вспо-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>признаков</td>
<td>признаков</td>
</tr>
<tr>
<td></td>
<td>r) наличие</td>
<td>a) увеличение вспо-</td>
<td>a) увеличение вспо-</td>
</tr>
<tr>
<td></td>
<td>признаков</td>
<td>ленных терминальных</td>
<td>ленных терминальных</td>
</tr>
<tr>
<td></td>
<td></td>
<td>источников</td>
<td>источников</td>
</tr>
<tr>
<td></td>
<td>s) особенно</td>
<td>a) увеличение вспо-</td>
<td>a) увеличение вспо-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>признаков</td>
<td>признаков</td>
</tr>
<tr>
<td></td>
<td>t) наличие</td>
<td>a) увеличение вспо-</td>
<td>a) увеличение вспо-</td>
</tr>
<tr>
<td></td>
<td>признаков</td>
<td>ленных терминальных</td>
<td>ленных терминальных</td>
</tr>
<tr>
<td></td>
<td></td>
<td>источников</td>
<td>источников</td>
</tr>
<tr>
<td></td>
<td>u) особенно</td>
<td>a) увеличение вспо-</td>
<td>a) увеличение вспо-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>признаков</td>
<td>признаков</td>
</tr>
<tr>
<td></td>
<td>v) наличие</td>
<td>a) увеличение вспо-</td>
<td>a) увеличение вспо-</td>
</tr>
<tr>
<td></td>
<td>признаков</td>
<td>ленных терминальных</td>
<td>ленных терминальных</td>
</tr>
<tr>
<td></td>
<td></td>
<td>источников</td>
<td>источников</td>
</tr>
<tr>
<td></td>
<td>w) особенно</td>
<td>a) увеличение вспо-</td>
<td>a) увеличение вспо-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>признаков</td>
<td>признаков</td>
</tr>
<tr>
<td></td>
<td>x) наличие</td>
<td>a) увеличение вспо-</td>
<td>a) увеличение вспо-</td>
</tr>
<tr>
<td></td>
<td>признаков</td>
<td>ленных терминальных</td>
<td>ленных терминальных</td>
</tr>
<tr>
<td></td>
<td></td>
<td>источников</td>
<td>источников</td>
</tr>
<tr>
<td></td>
<td>y) особенно</td>
<td>a) увеличение вспо-</td>
<td>a) увеличение вспо-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>признаков</td>
<td>признаков</td>
</tr>
<tr>
<td></td>
<td>z) наличие</td>
<td>a) увеличение вспо-</td>
<td>a) увеличение вспо-</td>
</tr>
<tr>
<td></td>
<td>признаков</td>
<td>ленных терминальных</td>
<td>ленных терминальных</td>
</tr>
<tr>
<td></td>
<td></td>
<td>источников</td>
<td>источников</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) 2 балла</td>
<td>a) 2 балла</td>
<td>a) 2 балла</td>
<td>a) 2 балла</td>
</tr>
<tr>
<td>b) 2 балла</td>
<td>b) 2 балла</td>
<td>b) 2 балла</td>
<td>b) 2 балла</td>
</tr>
<tr>
<td>c) 2 балла</td>
<td>c) 2 балла</td>
<td>c) 2 балла</td>
<td>c) 2 балла</td>
</tr>
<tr>
<td>d) 2 балла</td>
<td>d) 2 балла</td>
<td>d) 2 балла</td>
<td>d) 2 балла</td>
</tr>
<tr>
<td>e) 2 балла</td>
<td>e) 2 балла</td>
<td>e) 2 балла</td>
<td>e) 2 балла</td>
</tr>
<tr>
<td>f) 2 балла</td>
<td>f) 2 балла</td>
<td>f) 2 балла</td>
<td>f) 2 балла</td>
</tr>
<tr>
<td>g) 2 балла</td>
<td>g) 2 балла</td>
<td>g) 2 балла</td>
<td>g) 2 балла</td>
</tr>
<tr>
<td>h) 2 балла</td>
<td>h) 2 балла</td>
<td>h) 2 балла</td>
<td>h) 2 балла</td>
</tr>
<tr>
<td>i) 2 балла</td>
<td>i) 2 балла</td>
<td>i) 2 балла</td>
<td>i) 2 балла</td>
</tr>
<tr>
<td>j) 2 балла</td>
<td>j) 2 балла</td>
<td>j) 2 балла</td>
<td>j) 2 балла</td>
</tr>
<tr>
<td>k) 2 балла</td>
<td>k) 2 балла</td>
<td>k) 2 балла</td>
<td>k) 2 балла</td>
</tr>
<tr>
<td>l) 2 балла</td>
<td>l) 2 балла</td>
<td>l) 2 балла</td>
<td>l) 2 балла</td>
</tr>
<tr>
<td>m) 2 балла</td>
<td>m) 2 балла</td>
<td>m) 2 балла</td>
<td>m) 2 балла</td>
</tr>
<tr>
<td>n) 2 балла</td>
<td>n) 2 балла</td>
<td>n) 2 балла</td>
<td>n) 2 балла</td>
</tr>
<tr>
<td>o) 2 балла</td>
<td>o) 2 балла</td>
<td>o) 2 балла</td>
<td>o) 2 балла</td>
</tr>
<tr>
<td>p) 2 балла</td>
<td>p) 2 балла</td>
<td>p) 2 балла</td>
<td>p) 2 балла</td>
</tr>
<tr>
<td>q) 2 балла</td>
<td>q) 2 балла</td>
<td>q) 2 балла</td>
<td>q) 2 балла</td>
</tr>
<tr>
<td>r) 2 балла</td>
<td>r) 2 балла</td>
<td>r) 2 балла</td>
<td>r) 2 балла</td>
</tr>
<tr>
<td>s) 2 балла</td>
<td>s) 2 балла</td>
<td>s) 2 балла</td>
<td>s) 2 балла</td>
</tr>
<tr>
<td>t) 2 балла</td>
<td>t) 2 балла</td>
<td>t) 2 балла</td>
<td>t) 2 балла</td>
</tr>
<tr>
<td>u) 2 балла</td>
<td>u) 2 балла</td>
<td>u) 2 балла</td>
<td>u) 2 балла</td>
</tr>
<tr>
<td>v) 2 балла</td>
<td>v) 2 балла</td>
<td>v) 2 балла</td>
<td>v) 2 балла</td>
</tr>
<tr>
<td>w) 2 балла</td>
<td>w) 2 балла</td>
<td>w) 2 балла</td>
<td>w) 2 балла</td>
</tr>
<tr>
<td>x) 2 балла</td>
<td>x) 2 балла</td>
<td>x) 2 балла</td>
<td>x) 2 балла</td>
</tr>
<tr>
<td>y) 2 балла</td>
<td>y) 2 балла</td>
<td>y) 2 балла</td>
<td>y) 2 балла</td>
</tr>
<tr>
<td>z) 2 балла</td>
<td>z) 2 балла</td>
<td>z) 2 балла</td>
<td>z) 2 балла</td>
</tr>
</tbody>
</table>
воды в скважинах или дефектов источников, вариации химического состава в источниках (гидрологический) и периодически возникающие лилейно-объединительные аномалии над разломом (meteorологический) — зачастую используются при сейсмическом мониторинге.

3 балла присваивается за прямые признаки, которые с учетом определения разного времени активизации по разлому (плюоцен-четвертичного или современного) и магнитуды возможного землетрясения сопоставимы между собой. К таким относятся: трещины, раскалывающие несколько галек и валунох (облаков) в одном направлении, штрихи и борозды на их плоскостях, следы скольжения и складов на их поверхностях, образующихся при быстрых импульсных смещениях (структурно-геологический признак); наличие приуровочен к зоне разлома палеозойской дилокации длиной (L) до 10 км, показывающей вероятность возникновения землетрясения с M ≤ 6.5, согласно корреляционным зависимостям М(L) [Лунина, 2002] (палеосейсмогеологический); наличие 1—3 землетрясений с M ≥ 3.3 в зоне разлома; встречаемость землетрясения в зоне разлома с M ≤ 4.5 (сейсмологический); скорость смещения по разлому 2—5 мм/год (геолого-геодинамический), показывающий вероятность возникновения землетрясения с M ≤ 6 каждые 200 лет [Brady, 2002]. Таким образом, сейсмохимические признаки точнее указывают на современную активность дьякольвика, остальные — на позднекайнозойскую с вероятной активностью в настоящее время. В связи с этим при балле 3 в одном случае предельно допустимая M = 4.5, в другом — M = 6.0—6.5. 3 балла считается также за косвенный инженерно-геологический признак, свидетельствующий о наличии крупных оползней и обвалов объемом не менее 15500 м³, приуроченных к зоне разлома. Это единственный из косвенных признаков, за который дается экспертная оценка 3, так как само по себе возникновение подобного явления на урбанизированных территориях может привести к ощутимому ущербу для людей.

5 баллов присваивается только за прямые признаки, они по сравнению с предыдущими указывают на вероятность возникновения более сильного землетрясения в зоне изучаемого разлома. К ним относятся: наличие в плюоцен-четвертичных отложениях сейсмитов (сейсмогенных конволюций), зон трещино-
вательности, расслаивание или дробления, кластических даек сейсмогенного происхождения, смешений с амплитудой 5 и более сантиметров (структурно-геологический признак); наличие приуроченной к зоне разлома палеосейсмодислокации протяженностью 11—50 км, указывающей на вероятность возникновения землетрясения с М = 6.5—7.4 согласно корреляционным зависимостям М(L) [Лунина, 2002] (палеосейсмогеологический); наличие 4—5 землетрясений с М ≥ 3.3 в зоне разлома; встречаются землетрясения в зоне разлома с М = 4.6—6.5 (сейсмологический); скорость смещения по разлому более 5 мм/год (геолого-геодезический). Как и в предыдущем случае, признаки, за которые присваивается 5 баллов, сопоставимы между собой.

7 баллов присваивается за три прямых признака, указывающих на вероятность генерирования разломом катастрофического землетрясения. Это наличие приуроченной к зоне разлома палеосейсмодислокации протяженностью более 50 км, которая могла сформироваться при сейсмическом событии с М > 7.4, согласно корреляционным зависимостям М(L) [Лунина, 2002] (палеосейсмогеологический признак); наличие более 5 землетрясений с М ≥ 3.3 в зоне разлома; встречаются землетрясения с М > 6.5 в зоне разлома (сейсмологический).

После заполнения базы данных степень активности для каждого разрывного нарушения рассчитывается простым суммированием и записывается как общий балл активности разлома по имеющимся данным. В конце каталога (в отдельной колонке для каждого разлома) обязательно приводится источник получения информации.

Наполнение базы данных основывается на данных собственных материалах, а также и литературных источниках. Естественно, чем больше необходимой информации будет заложено в каталог, тем достовернее будет оценка степени активности разломов. Следует подчеркнуть, что степень изученности динамично-вов здесь не учитывается, поскольку, работа в регионе на местном масштабе, ее просто учесть невозможно, однако у составителя базы данных всегда есть возможность пополнить ее новыми материалами и, соответственно, уточнить оценки. Напротив, при детальном изучении на локальных участках можно получить более точные данные по всем или избранным (с учетом геодинамических особенностей района исследований) характеристиках. Таким образом, предложенная методика выгодно отличается от подобных тем, что учитывает большее количество признаков и имеет более гибкую экспертную шкалу баллов.

АПРОБИРОВАНИЕ МЕТОДИКИ ОЦЕНКИ СТЕПЕНИ АКТИВНОСТИ РАЗЛОМОВ ДЛЯ НЕКОТОРЫХ РАЙОНОВ БАЙКАЛЬСКОЙ РИФТОВОЙ ЗОНЫ

Помимо территории Прибайкалья количественная оценка степени активности была проведена в других регионах на разрывных нарушениях, расположенных в пределах юго-западного и северо-восточного флангов Байкальской рифтовой зоны (см. рис. 1). Для этих районов также имеются карты разломно-блокового строения земной коры [Лунина, Гладков, 2004, 2008], которые и послужили основой для комплексного анализа. Следует отметить, что при апробировании описанной методики для указанных территорий не рассматривались инженерно-геологические и метеорологические признаки активности разломов и не в полном объеме (из-за недостатка опубликованных данных) геолого-геодинамические, гидрогеологические и геофизические, так как все же главной целью было показать работоспособность подхода. Кроме того, его преимущество как раз в том и состоит, что для общей первоначальной оценки можно использовать легкодоступные опубликованные результаты, а для конкретных задач степень активности динамиктов может уточняться путем привлечения большего количества данных из различных источников.

На основании полученных экспертных оценок для разных районов Байкальской рифтовой зоны было выделено пять степеней активности разломов: слабая (1—5 баллов), средняя (6—10), повышенная (11—20), высокая (21—30), аномально высокая (более 31). Разные интервалы деления групп определяются исходя из следующих соображений. Как правило, 11 и более баллов набирается у разломов с прямыми признаками активности, указывающими на возможность сейсмогенного или довольно быстрого криволинейного смещения (более 5 мм/год) вдоль смещателя. В ином случае динамиктов, характеризуя-
Рис. 2. Карты плиоцен-четвертичных разломов Баргузинской рифтовой впадины и ее горного обрамления, характеризующихся разной степенью активности.
1—4 — разломы разной степени активности: 1 — слабой (1–5), 2 — средней (6–10), 3 — повышенной (11–20), 4 — высокой (21–30); 5 — предполагаемые разломы; 6 — впадины, заполненные кайнозойскими осадками, 7 — выходы кристаллического фундамента, 8 — границы куйтунов.
Плутон, Четвертичных разломов Тункинской рифтовой впадины и ее горного обрамления, характеризующихся разной степенью активности.
1 — номера разломов, см. в тексте, табл. 4. Ост. усл. обозн. см. рис. 2.

...еся повышенной и высокой степенью активностью, должны обладать большим количеством косвенных признаков активности, которые в комплексе также нельзя игнорировать. Таким образом, именно разломы с активностью 11 и более баллов необходимо считать опасными или сейсмоопасными (если установлено, что с ними ассоциируются землетрясения или в зоне разлома зафиксированы сейсмогенные деформации). Разделение неопасных разломов на первый взгляд маловажно, но если проектируемый объект попадает в зону влияния разлома со средней степенью активности, то следует обратить внимание, не приближается ли его количество к группе с повышенной степенью активности, и далее в зависимости от значения будущего инженерно-технического сооружения и признаков, характеризующих разлом, обосновывать его учет при строительстве. В остальном же роль неопасных разломов, но в той или иной степени активных в позднем кайнозое (а значит незначимых), состоит в том, что в зависимости от их расположения по отношению к очагу землетрясения, они (как и другие активные разрывные нарушения) будут служить либо экраном, либо проводником для распространения сейсмических волн при землетрясении, таким образом, усиливая или уменьшая их воздействие на геологическую среду и, следовательно, на имеющиеся сооружения. Возможность, что движения по таким разрывам могут генерировать слабые землетрясения, но они не будут представлять угрозы для населения.
Рис. 4. Карты плюоцен-четвертичных разломов северо-восточного фланга Байкальской рифтовой зоны, характеризующихся разной степенью активности.
Усл. обоз. см. на рис. 2.

Результаты расчетов для Баргузинской и Тункинской впадин и их горного обрамления, а также для северо-восточного фланга Байкальской рифтовой зоны графически представлены на рис. 2—4. Для всех трех изученных площадей минимальное значение степени активности разлома равно 1 (табл. 3). К таким разрывным нарушениям относятся те, активность которых определяется только геоморфологическим признаком и выявляется дистанционным диагностированием. Примечательно, что среднее значение степени активности разломов для исследованных районов примерно одинаково и равно 3. Максимальные значения относятся к группе высокой активности диньонктивов и наиболее на флангах Байкальской рифтовой зоны (27—28).

Распределение разломов по степени активности (в процентах) для изученных территорий находится в примерно одинаковом соотношении (см. табл. 1). Только 1 % от всех закартированных диньонктивов характеризуется высокой степенью активности и от 3 до 7 % — повышенной. Таким образом, всего 4—8 % разломов могут представлять реальную сейсмическую опасность. При привлечении большего количества данных для характеристики активности разломов в пределах изученных площадей этот процент может повыситься, но незначительно, так как все известные на сегодняшний день сейсмологические,
Палеосейсмогеологические и структурно-геологические признаки, вносящие основной вклад в расчет степени активности разрывных нарушений, учтены.

При анализе пространственного распределения разломов разной степени активности выявляется, что подавляющее большинство дизъюнктивов, характеризующихся повышенной и высокой степенью активности, ограничивается бортом рифтовых впадин или находится внутри них (см. рис. 2—4). Как правило, к ним относятся протяженные разломы или их сегменты, составляющие целые системы (например, Баргузинская, Тункинская, Южно-Тункинская и др. разломные системы). Разрывные нарушения со слабой степенью активности расположены преимущественно в горном обрамлении.

Сопоставление длии разломов и степени их активности показывает, что при общей тенденции (чем больше протяженность дизъюнктива, тем больше активность) вероятность того, что разлом длиной 10—
Таблица 4.
Признак активности для некоторых разломов Тункинской рифтовой впадины и ее горного обрамления

<table>
<thead>
<tr>
<th>Геоморфологический</th>
<th>Геофизический</th>
<th>Гидрологический</th>
<th>Структурно-геологический</th>
<th>Палеосейсмогеологический</th>
<th>Сейсмологический</th>
<th>Геолого-геодезический</th>
</tr>
</thead>
<tbody>
<tr>
<td>Географический</td>
<td>Направление</td>
<td>Источник</td>
<td>Глубина</td>
<td>Время сейсмической</td>
<td>Сейсмичность</td>
<td>Скорость смещения</td>
</tr>
<tr>
<td>Тункинский разлом, 41, L = 160 км, W = 16 км, общая оценка активности — 28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) линеамент на топоосновах — 1 балл</td>
<td>—</td>
<td>a) восходящий источник Гунга-2, температурой 37° — 2 балла</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>b) уступ на местности — 2 балла</td>
<td>—</td>
<td>в) зоны трещиноватости, многочисленные смещения более 5 см в разнообразных отложениях (конгломератах, галечниках, суглинках, песках) плющеноностого, плейстоценового и голоценового возраста — 5 баллов</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Глубинный Саянский разлом, 119, L = 102 км, W = 10.2 км, общая оценка активности — 21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>б) трещины, раскрываяющие несколько галек в одном направлении в конгломератах плющеноностого плющеноностого — 3 балла</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>в) палеосейсмодислокации проявлением от 40 до 60 (95) км [Чигунов, Смекалин, 1999]</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>г) K = 12, M = 4.4 — 3 балла</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>д) 4 землетрясения в зоне разлома с M ≥ 3.3 — 5 баллов</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>е) K = 11.4, M = 4.1 — 3 балла</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Хойтогольский разлом, 42, L = 28 км, W = 2.8 км, общая оценка активности — 22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) линеамент на топоосновах — 1 балл</td>
<td>—</td>
<td>a) восходящий источник Ни-лова Пустынь с температурой 41° — 2 балла</td>
<td>a) повышенное содержание радона в воде — 2 балла</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>в) зоны трещиноватости, смещения более 5 см, сейсмиты в су- песях, песках, галечниках плейстоценового возрастного — 5 баллов</td>
<td>a) 10 землетрясений в зоне разлома с M ≥ 3.3 — 7 баллов</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>г) K = 12.5, M = 4.7 — 5 баллов</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Первый сегмент Южно-Тункинского разлома, 47, L = 49 км, W = 4.9 км, общая оценка активности — 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>в) трещины, смещения углестрых прожилков, веркок скольжения (в базальтах) в породах (галечниках, базальтах, суглинках, песках и др.) плейстоцен и голоцен — 5 баллов</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>a) 2 землетрясения в зоне разлома с M ≥ 3.3 — 3 балла</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>г) K = 10, M = 3.3 — 3 балла</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Второй сегмент Южно-Тункинского разлома, 131, L = 22 км, W = 2.2 км, общая оценка активности — 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) линеамент на топоосновах — 1 балл</td>
<td>—</td>
<td>a) зоны трещиноватости в песках, суглинках, базальтах плющеноностого и голоцен и плейстоцена — 5 баллов</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>a) 1 землетрясения в зоне разлома с M ≥ 3.3 — 3 балла</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>г) K = 14, M = 5.6 — 5 баллов</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
Третий сегмент Южно-Тунгусского разлома, переходящий в Обручевский сброс в Байкале, 152, \(L = 102 \text{ км}, W = 10.2 \text{ км} \), общая оценка активности — 14

| Разлом 159, \(L = 33 \text{ км}, W = 3.3 \text{ км} \), общая оценка активности — 8 |
|---|---|
| а) трещины в песках и гравийных осадках позднего кайнозоя — 1 балл |
| б) 4 землетрясения в зоне разлома с \(M \geq 3.3 \) — 5 баллов |
| г) \(K = 11.2, M = 4 \) — 3 балла |

Разлом 63, \(L = 16 \text{ км}, W = 1.6 \text{ км} \), общая оценка активности — 3

| а) восходящие источники Шуманские с температурой 39° — 2 балла |
| б) 2 землетрясения в зоне разлома с \(M \geq 3.3 \) — 3 балла |
| г) \(K = 11.4, M = 4.1 \) — 3 балла |

Примечание. В таблице в качестве примера приводится минимальная информация для каждого разлома, достаточная для демонстрации признаков, по которым проводилась оценка; сведения по геоморфологическим и структурно-геологическим признакам приведены по данным автора, по гидрологическим — из работы [Пионенбер и др., 1968]. \(L \) — длина на карте, \(W \) — ширина зоны динамического влияния.

Заключение. Более 30 разломов описанных в данном разделе и на протяжении 100 км могут обладать средней слабой активностью, а также для хорошо известных активных разломов, где потенциально возможны землетрясения, следует учитывать их влияние на гребневую сейсмоактивность и возможные землетрясения. Сравнение разломов с крупными тектоническими структурами и морфологическими особенностями, а также дополнительная информация о них, позволит оценить их влияние на гребневую сейсмоактивность. Важно учитывать, что разломы с высоким уровнем активности могут быть связаны с геодинамическими процессами и тектоническими структурами, что требует дополнительной геологической проработки. Важно учитывать влияние разломов, особенно вблизи крупных геодинамических структур, на сейсмическую активность.

При этом некоторые разломы, расположенные вблизи крупных геодинамических структур, могут быть потенциально опасными для гребневой сейсмоактивности. Важно учитывать влияние разломов и других геодинамических структур на сейсмическую активность и принимать соответствующие меры для обеспечения безопасности. Важно учитывать, что разломы с высоким уровнем активности могут быть связаны с геодинамическими процессами и тектоническими структурами, что требует дополнительной геологической проработки. Важно учитывать влияние разломов, особенно вблизи крупных геодинамических структур, на сейсмическую активность.

При этом некоторые разломы, расположенные вблизи крупных геодинамических структур, могут быть потенциально опасными для гребневой сейсмоактивности. Важно учитывать влияние разломов и других геодинамических структур на сейсмическую активность и принимать соответствующие меры для обеспечения безопасности.

При этом некоторые разломы, расположенные вблизи крупных геодинамических структур, могут быть потенциально опасными для гребневой сейсмоактивности. Важно учитывать влияние разломов и других геодинамических структур на сейсмическую активность и принимать соответствующие меры для обеспечения безопасности.

При этом некоторые разломы, расположенные вблизи крупных геодинамических структур, могут быть потенциально опасными для гребневой сейсмоактивности. Важно учитывать влияние разломов и других геодинамических структур на сейсмическую активность и принимать соответствующие меры для обеспечения безопасности.
ционным геологам Южно-Тункинского разлома, состоящего из трех основных сегментов (см. рис. 3). Согласно примененной методике, этот дайкшовт характеризуется повышенной степенью активности и может представлять потенциальную опасность, что подтверждается результатами расчетов количественного индекса сейсмичности [Шерман, Савитский, 2004], свидетельствующими о наиболее высокой современной активности Тункинского, Главного Саянского и Южно-Тункинского разломов.

ЗАКЛЮЧЕНИЕ

В результате проведенных исследований разработан формализованный подход к оценке активности разломов, основанный на экспертных баллах, последние присваиваются за различие характеристизующие их признаки. Учет разнородных данных (геоморфологических, структурно-геологических, па- леосейсмологических, сейсмологических, геофизических, геодезических, инженерно-геологических, гидрогеологических, метеорологических) дает возможность применять его не только в сейсмически активных областях, но и в пределах относительно слабоактивных платформенных территорий. Для расчета активности разрывных нарушений можно использовать только те признаки, данные по которым легко доступны или известны на момент проведения исследования. При необходимости, если это оправдано целью исследования, можно провести дополнительные изыскания. Предложенную методику можно применять для карт и схем дайкшовтного тектоники любых масштабов. При этом в зависимости от масштаба исследований можно выбирать те признаки, которые будут адекватно описывать активность разрывного нарушения. Кроме того, сами по себе базы данных, на которых основываются расчеты, являются уникальным систематизированным материалом, разносторонне характеризующим разломы какой-либо территории.

Предложенный подход вместе с ранее разработанными и используемыми методами [Ружич, 1997; Узовов, Шумилина, 1999; Рогожкин и др., 2005], на разных этапах работ может успешно применяться: при выделении зон возникновения очагов землетрясений и сейсмическом районировании; для выявления опасных разломов, развитие которых под воздействием природных и антропогенных факторов во время эксплуатации инженерных сооружений (трубопроводов, электростанций, крупных мостов и тоннелей) может привести к существенному экологическому и экономическому ущербу; для обоснования выбора участков, перспективных для проведения геофизического мониторинга сейсмичности в целях средне- и краткосрочного прогноза землетрясений.

Автор искренне благодарна сотруднику лаборатории гидрогеологии ИЗК СО РАН А.И. Ортильно- ву за помощь в систематизации данных по геоморфическим и, в частности, сотрудникам лаборатории электромагнитных полей Института нефтегазовой геологии и геофизики СО РАН Н.Н. Неведровой и А. М. Синича за предоставление результатов интерпретации геоэлектрических аномалий по Баргузинской и Тункинской впадинам.

ЛИТЕРАТУРА

Голенецкий С.И., Кочетков В.М., Солоненко А.В., Мишарина Л.А., Боровик Н.С., Солонен- ко Н.В., Тилева Н.А., Козьмин Б.М., Анканова Г.В., Мельникова В.И., Штейман Е.А., Лари- нов А.Г. Геология и сейсмичность зон БАМ. Сейсмичность. Новосибирск, Наука, 1985, 192 с.

Лукина Н.Б. Активные разломы и сейсмичность Алтая // Геология и геофизика, 1996, т. 37 (11), с. 71—74.

Лукин О.В., Гладков А.С. Разломно-блоковое строение и поля напряжений земной коры Баргу- зинского рифта в зоне айсозойского (Байкальский регион) // Геология и геофизика, 2007, т. 48 (7), с. 775—790.

Минеральные воды южной части Восточной Сибири. Т. 1. Гидрогеология минеральных вод и их народно-хозяйственное значение / Под ред. В.Г. Ткачук, Н.И. Толстихина. М.; Л., Изд-во АН СССР, 1961, 342 с.

537

Морозова Л.И. К вопросу об активности разломов, выявляемой в поле облачности на спутниковых снимках Земли // Исследование Земли из космоса, 2005, № 2, с. 1—4.

Несменов С.А. Введение в инженерную геотехнику. М. Научный мир, 2004, 216 с.

Несменов С.А., Ларина Т.А., Льтгынева Л.А., Мандель И.Г., Серебрякова Л.И., Соколов В.С., Хайме Н.М. Выявление и прогноз опасных разрывных тектонических смешений при инженерных изысканиях для строительства // Инженерная геология, 1992, № 2, с. 17—32.

Никонов А.А. Активные разломы: определение и проблемы выделения // Геоэкология, 1995, № 4, с. 16—27.

Осюченко Н.И. Изучение современной активности тектонических нарушений в сейсмоопасных районах // Геопрофил, 2006, № 1, с. 51—55.

Пиннекер Е.В., Писарский Б.И., Ломоносов И.С., Калдышеева Р.Я., Диденко А.А., Шишерман С.И. Гидрогеология Прибайкалья. М., Наука, 1968, 170 с.

Ружич В.В. Сейсмотектоническая деструкция в земной коре Байкальской рифтовой зоны. Новосибирск, Изд-во СО РАН, 1997, 144 с.

Солненко В.П., Николаев В.В., Семенов Р.М., Демьянович М.Г., Курушин Р.А., Хромовских В.С., Чипилшов А.В. Геология и сейсмичность зоны БАМ. Сейсмогеология и сейсмическое районирование. Новосибирск, Наука, 1985, 192 с.

Трифонов В.Г., Кожурин А.Н., Лужина Н.В. Изучение и картирование активных разломов // Сейсмичность и сейсмическое районирование Северной Евразии, 1993, вып. 1, с. 196—205.

Чипизубов А.В., Смекалин О.П., Семенов Р.М. Палеосейсмодислокации и связанные с ними палеоземлетрясения в зоне Тункинского разлома (Юго-Западное Прибайкалье) // Геология и геофизика, 2003, т. 44 (6), с. 587—602.

Шерман С.И., Савитский В.А. Активные разломы литосферы и их потенциальная природная опасность: опыт ранжирования по количественному индексу сейсмичности // Современная геодинамика и опасные природные процессы в Центральной Азии. Вып. 3 (Материалы совещания «Современная геодинамика и сейсмичность Центральной Азии: фундаментальный и прикладные аспекты»). Иркутск, ИЗК СО РАН, 2005, с. 16—27.

Шерман С.И., Борняков С.А., Будло В.Ю. Рекомендации по оценке ширины зон призаблоковых структурных изменений (по результатам физического моделирования). Иркутск, ИЗК СО РАН, 1985, 42 с.

Шерман С.И., Берджинский Ю.А., Павленов В.А., Антикаев Ф.Ф. Региональные шкалы сейсмической интенсивности. Опыт создания шкалы для Прибайкалья. Новосибирск, Изд-во СО РАН, филиал «Гео», 2003, 189 с.

Эпов М.И., Неведрова Н.Н., Сачча А.М. Геоэлектрическая модель Баргузинской впадины Байкальской геофизической зоны // Геология и геофизика, 2007, т. 48 (7), с. 811—829.

